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Abstract In protein X-ray crystallography, resolution is

often used as a good indicator of structural quality. Dif-

fraction resolution of protein crystals correlates well with

the number of X-ray observables that are used in structure

generation and, therefore, with protein coordinate errors. In

protein NMR, there is no parameter identical to X-ray

resolution. Instead, resolution is often used as a synonym

of NMR model quality. Resolution of NMR structures is

often deduced from ensemble precision, torsion angle

normality and number of distance restraints per residue.

The lack of common techniques to assess the resolution of

X-ray and NMR structures complicates the comparison of

structures solved by these two methods. This problem is

sometimes approached by calculating ‘‘equivalent resolu-

tion’’ from structure quality metrics. However, existing

protocols do not offer a comprehensive assessment of

protein structure as they calculate equivalent resolution

from a relatively small number (\5) of protein parameters.

Here, we report a development of a protocol that calculates

equivalent resolution from 25 measurable protein features.

This new method offers better performance (correlation

coefficient of 0.92, mean absolute error of 0.28 Å) than

existing predictors of equivalent resolution. Because the

method uses coordinate data as a proxy for X-ray diffrac-

tion data, we call this measure ‘‘Resolution-by-Proxy’’ or

ResProx. We demonstrate that ResProx can be used to

identify under-restrained, poorly refined or inaccurate

NMR structures, and can discover structural defects that

the other equivalent resolution methods cannot detect. The

ResProx web server is available at http://www.resprox.ca.

Keywords Protein � Structure � Quality � NMR � X-ray

resolution

Introduction

The assessment of protein structure quality continues to be

an important area for the ‘‘consumers’’, ‘‘brokers’’ and

‘‘producers’’ of protein structures. Structural biologists (the

‘‘producers’’) want improved measures for assessing

structure quality to help with the structure determination

process. Database curators (the ‘‘brokers’’) want improved

tools to validate new entries and to identify potentially

fraudulent or erroneous structures. Bioinformaticians, pro-

tein chemists, and drug designers (the ‘‘consumers’’) want

improved methods to rapidly select high quality structures

for the modeling of novel protein structures or novel ligand

complexes. One of the challenges in structure assessment

and validation is the inconsistency in metrics and protocols

that are used to evaluate structures determined by X-ray

crystallography and NMR. In X-ray crystallography, most

investigators assess structure quality in terms of resolution,

Rfree factor, reflection completeness, B-factors, and stereo-
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chemical normality parameters (Wlodawer et al. 2008).

X-ray resolution can serve as a reasonable first approxi-

mation of protein structure quality when a very precise or

exhaustive protein assessment is not required. Resolution is

formally designed as the minimal distance between struc-

tural features that can still provide measurable X-ray dif-

fraction and, as a result, can be distinguished from each

other on electron density maps (Wlodawer et al. 2008). A

protein with a resolution above 2.7 Å is considered to be

low-resolution structure, while proteins with a resolution

between 2.7 and 1.8 Å are classified as medium resolution

structures, and those below 1.8 Å resolution are typically

classified as high-resolution structures (Minor 2007;

Wlodawer et al. 2008).

In protein NMR, structural quality is typically reported

in terms of numbers of restraint violations, numbers of

experimental restraints, ensemble precision and stereo-

chemical normality parameters (Spronk et al. 2004). NMR

parameters similar to the X-ray Rfree factor do exist

(Cornilescu et al. 1998; Clore and Garrett 1999; Gron-

wald et al. 2000; Huang et al. 2005) but they either have

not been widely adopted or are not always reported in

NMR publications. The number of NMR experimental

restraints is not directly comparable to the number of

X-ray reflections due to their different meanings and their

different utilization in structure generation. NMR struc-

tures do not have a parameter identical to X-ray resolu-

tion. However, the term ‘‘resolution’’ is still widely used

in protein NMR as a synonym of structural quality.

Resolution range (high-, medium-, or low-resolution) is

commonly assigned to NMR ensembles based on

parameters, such as ensemble precision, the quality of the

Ramachandran plot and the number of NOEs per residues

(Kwan et al. 2011).

The differences in resolution definitions, criteria for

evaluating quality of experimental data and goodness of

structure-to-experiment fit make it difficult to compare

protein structures determined by X-ray crystallography and

NMR spectroscopy. The current situation makes it partic-

ularly challenging for structure ‘‘consumers’’ to make

reasonable decisions how to properly select NMR struc-

tures for analysis or comparison in their research projects.

It is possible to do a partial evaluation of the quality of

NMR and X-ray structures in a consistent manner through

other methods that depend upon atomic coordinates rather

than experiment-specific data (such as diffraction data or

NOE data). Commonly assessed parameters include the

normality of torsion angles, the presence of atom clashes,

the normality of hydrogen bonding, violations of bond

lengths and bond angles (Laskowski et al. 1993, 1996;

Hooft et al. 1996; Willard et al. 2003; Davis et al. 2007;

Berjanskii et al. 2010). Other techniques that assess cavi-

ties (Sheffler and Baker 2009), residue-specific packing

volumes (Richards 1977), packing efficiency (Seeliger and

de Groot 2007), threading energies (Eisenberg et al. 1997;

Wiederstein and Sippl 2007), atomic volumes (Pontius

et al. 1996), as well as asparagine and glutamine flips

(Vriend 1990; Word et al. 1999) have also been shown to

be quite effective in assessing protein structure quality at a

global level. However, the problem with these methods is

that each approach has different criteria or non-obvious

thresholds for calculating an ‘‘overall grade’’ for a structure

or distinguishing good structures from bad.

To address this issue of inconsistency, methods that use

a more universally understood criterion (i.e. X-ray resolu-

tion) have been developed over the past few decades. In

particular, protocols to calculate ‘‘equivalent resolution’’

from coordinate data have been incorporated into several

structure validation programs, such as Procheck-NMR

(Laskowski et al. 1996), MolProbity (Chen et al. 2010),

and RosettaHoles2 (Sheffler and Baker 2010). Unfortu-

nately, all of the existing methods rely on a very small

number of protein structure quality measures to predict

resolution (4, 3, and 1 measures, respectively) and, there-

fore, cannot provide a comprehensive assessment of pro-

tein structure quality. Here, we show that it is possible to

develop a computer algorithm that accurately predicts

equivalent resolution from a much more complete set of 25

protein features. We also show that this new method is

significantly more accurate than other equivalent resolution

techniques and that it reproduces the expected behaviour of

a true resolution function (i.e. sensitivity to the quantity of

experimental data, sensitivity to coordinate errors, corre-

lation with orthogonal measures of structure quality, etc.)

better than existing techniques. Because the method uses

coordinate data as a proxy for X-ray diffraction data, we

have decided to call this measure ‘‘Resolution-by-Proxy’’

or ResProx. A more detailed description of the method

follows.

Materials and methods

A brief summary of the ResProx protocol

ResProx consists of three main elements: (1) a machine

learning predictor (SVR predictor); (2) a Z-score based

predictor (Z-Mean predictor); and (3) a decision making

module (DecisionMaker). This algorithmic structure is

illustrated in Fig. S1. Both predictors are run sequentially

for a query PDB file and the decision making algorithm

uses the two estimated resolution values and selected

protein quality scores to decide which resolution value

should be returned to the user. We describe the training,

implementation and optimization of these three compo-

nents below.
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Training and testing sets

Key to the development and testing of ResProx was the

construction of a suitable training and testing set of X-ray

structures with a wide span of known X-ray resolutions.

This collection of structures was divided into 0.25 Å res-

olution bins and the initial training set was built so that, at

least, 100 structures could be placed in each bin, spanning a

range between 1.0 and 3.75 Å (Fig. S2). No minimum

requirements were applied to the resolution bins outside

this range. A total of 2,927 structures that were largely free

of severe structural defects, as assessed by several mea-

sures of structure quality (Berjanskii et al. 2010), were

selected from the PDB. These structures spanned an X-ray

resolution range between 0.75 and 4.75 Å. A testing set of

500 proteins was randomly selected from this initial protein

pool of 2,927 proteins, leaving 2,427 proteins for the

training set. To have the required number of structures in

each resolution bin, redundant proteins were allowed to be

present in both the training and testing datasets. However,

care was taken to ensure that no particular protein system

dominated the training and testing sets. More specifically,

proteins that had 2, 3, 4, and 5 or more similar structures

with sequence identities above 98 % did not exceed 35,

2.5, 1 and 2 % of protein set, respectively. The PDB IDs of

the proteins that were included in the training and testing

sets are available from the ResProx website (http://

www.resprox.ca).

SVR predictor

The development of the ResProx machine learning pre-

dictor started from a feature selection step to identify a set

of protein structure quality parameters that could be used

for resolution prediction. Using a small number of highly-

relevant features in machine learning usually produces a

more robust predictive model than using large numbers of

low quality or low relevance features (Mitchell 1997). On

the other hand, a protein feature set for evaluating protein

structure quality should be relatively comprehensive in

order to effectively detect a variety of structural abnor-

malities that can occur during X-ray or NMR model gen-

eration. The feature selection used for ResProx was

primarily based on absolute Pearson correlation coeffi-

cients between the observed X-ray resolution and the

structure quality scores from a variety of in-house and

externally developed programs, such as VADAR (Willard

et al. 2003), MolProbity (Davis et al. 2007), GeNMR

(Berjanskii et al. 2009), PROSESS (Berjanskii et al. 2010),

and RosettaHoles (Sheffler and Baker 2009, 2010). Scores

with higher absolute correlation coefficients were generally

given preference. In addition, care was taken to ensure that

major categories of protein quality parameters (e.g.

covalent bond quality, protein packing quality, torsion

angle quality, etc.) had at least one representative in the

final feature set, even if no feature in these categories

correlated particularly well with resolution. While the

presence of these low-correlating features could possibly

decrease the performance of the machine learning model,

their scores were included to make the model more sensi-

tive to rarely occurring defects in protein structures. In

total, 25 features were selected (Table S1). Figure S3

illustrates the relationship between several of these high-

and low-correlating protein structure quality parameters

and X-ray resolution.

This set of 25 features was first used to construct a

support vector regression (SVR) model for prediction of

the corresponding X-ray resolution, using version 3.6.2 of

WEKA (Hall et al. 2009). An improved version of the

sequential minimal optimization (SMO) algorithm (She-

vade et al. 2000) was chosen to solve the regression

problem via this support vector machine method. The SMO

algorithm was run with the default options for the epsilon

insensitive loss function, stopping criteria, round-off error

and algorithm variant. A radial basis function (RBF) was

selected as the SVR kernel. The optimal value of 0.35 for

the gamma parameter that describes the width of the RBF

kernel was found through a systematic grid search. The

model was trained on the aforementioned training set of

2,427 proteins. During the SVR model optimization, it was

found that developing an accurate SVR predictor require

additional post-processing that included applying minimal

and maximal limits to the score values, and converting

some scores to their logarithmic form as described in Table

S1. When tested on the 500-protein testing set, the SVR

model demonstrated the same outstanding agreement with

experimentally measured resolution as it did with the 2,427

protein training set (see ‘‘Results and discussion’’).

Z-Mean predictor

Initial tests of the SVR model on NMR and X-ray struc-

tures revealed that the algorithm excelled at predicting the

experimentally observed resolution for published X-ray

structures, but sometimes produced unreasonable resolu-

tion estimates for deliberately misfolded or under-deter-

mined NMR models. For example, the SVR model could

assign an equivalent resolution value of 2.3 Å for a struc-

ture with as many as 10 NOE violations. This result was

not totally unexpected because certain structural defects

observed in poor NMR models, such as packing defects,

unrealistic bond lengths, and distorted bond angles were

not commonly seen in the SVR training set of X-ray

structures. It is conceivable that the SVR model failed for

some NMR structures because the machine learning

method did not have proper training data to learn how to
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relate NMR-specific defects to X-ray resolution. To cal-

culate equivalent resolution for proteins with a larger array

of structural defects, we developed a second algorithm,

called Z-Mean. Rather than using machine learning meth-

ods, the Z-Mean approach uses a simpler regression model.

In particular, it empirically selects features that correlate

well with the measured X-ray resolution of well-deter-

mined structures and extrapolates this fit to the problem

proteins. Z-mean was optimized and tested on the same

X-ray structure training and testing sets that were used for

the development of the SVR model. In addition, Z-Mean,

as well as the SVR model and the final ResProx protocol

were tested on 920 NMR models that were deliberately

under-constrained or contained high numbers of NOE

constraint violations.

To develop Z-Mean, a subset of 15 structure quality

parameters (Table S1) was empirically selected from the

SVR model scores to reduce feature redundancy and

remove scores with exceptionally poor correlations to

experimental resolution. For example, only two parameters

were selected among 5 different metrics of protein hydro-

gen bonding. A similar approach was applied to various

normality measures of side-chain orientations and back-

bone torsion angles. This extra feature selection step was

necessary to achieve comparable contributions from each

category of protein quality into resolution predictions while

preserving the accuracy of the predictions. A subset of 235

high-resolution X-ray structures (resolution below or equal

to 1.0 Å) was selected from the original ResProx protein

set to find the means and standard deviations of the selected

quality parameters for calculation of their Z-scores.

The structure quality parameters were divided into two

groups: structural measures and normality parameters,

which are derived by comparing the structural measures of

a query protein with their counterparts in high-quality

structures. An example of a structural measure is the

hydrogen bond energy. Both excessive hydrogen bonding

due to incorrect HNi–COi-2 hydrogen bonding (Xia et al.

2002) and insufficient hydrogen bonding can be a good

indicator of poor model quality. Therefore, both positive

and negative Z-scores of hydrogen bond energy were taken

into account in the calculation of the absolute Z-score. For

normality parameters, such as the percentage of residues in

the disallowed regions of the Ramachandran plot, only the

sign (either positive or negative) indicates an increase or

decrease in protein quality. The signs of the Z-scores that

were used in predicting protein resolution are shown in

Table S1. Z-scores of the opposite sign are evidence of

exceptional structural quality that may arise from either

heroic research efforts in structure determination or by

specifically refining the model using similar normality

parameters such as the Rama energy term in the XPLOR-

NIH program (Schwieters et al. 2003). Since the origin of

such ‘‘too-good-to-be-true’’ Z-scores cannot be determined

from protein coordinates, we decided not to penalize pro-

tein models for having them and used zero as a default

Z-score value.

Individual Z-scores were combined into a single mea-

sure of overall quality by calculating a simple average. No

weighting coefficients were assigned to quality parameters

in the calculations of the average Z-score in order to make

this ResProx step equally sensitive to all selected types of

protein quality characteristics. The observed X-ray reso-

lution for the training data set was plotted against the

average Z-score and the linear part of the plot (average Z-

score from 0 to 1.2) was fit by a first-order polynomial

equation (Fig. S4) using QtiPlot 0.9.8.4 (Vasilief 2011).

The following formula for converting mean Z-scores to

resolution values (Å) was obtained via curve fitting:

Z-Mean resolution ¼ 1:52� �Zþ 0:76 ð1Þ

where �Z is the average Z score.

DecisionMaker

Since two equivalent resolution values are available from

these two ResProx predictors, a decision needs to be

made regarding which prediction should be returned to

the user. ResProx’s decision making module uses the

predicted resolution values and GeNMR (Berjanskii et al.

2009) scores to determine if a model has structural

problems that are rare in published structures and, there-

fore, may not suitable for the SVR model. More specifi-

cally, a protein model is considered to be poor if its total

GeNMR knowledge-based score, excluding the radius of

gyration score, is above 10 (Fig. S5). Also, if the Z-Mean

algorithm reports a predicted resolution that is signifi-

cantly worse than the one predicted by the SVR model

(i.e. the Z-Mean equivalent resolution is larger than the

SVR model resolution by more than an empirical

threshold of 1.5 Å), a preference is given to the Z-Mean

value, which is designed for handling low-quality struc-

tures. A special rule is also applied to unfolded structures

or small extended peptides, whose structures cannot be

confidently determined by NMR or X-ray methods and

are beyond the range of applicability of both ResProx

predictors. Such models are identified by extremely weak

or non-existent hydrogen bonding. In these cases, if the

GeNMR hydrogen bond energy score is above 1.5, the

protein model is believed to be unstructured and is

assigned an upper resolution limit of 10 Å. Analysis of

the ResProx training set (see below) suggests that these

empirical rules create an effective switch between appli-

cations of the SVR model for good quality models and

Z-Mean or an upper resolution limit for poorly deter-

mined or incorrectly determined structures.
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Results and discussion

Performance of ResProx on X-ray structures

As noted earlier, ResProx consists of two resolution pre-

dictors, an SVR predictor and Z-Mean predictor. The first

is designed to handle properly folded or properly deter-

mined protein structures, the second is developed to handle

unusual, partially refined or misfolded structures. The

performance of the SVR predictor was evaluated by cal-

culating absolute errors of prediction and correlation

coefficients achieved by the machine learning model for

both the independent test set of 500 proteins and a fivefold

cross validation assessment of the 2,427 training proteins.

If a machine learning algorithm has not been over-trained,

the performance for the fivefold cross validation should

match closely (*1–2 %) with the performance on the

independent test set. As seen on Fig. 1, this is indeed the

case for the SVR predictor. The absolute error of prediction

and the correlation coefficient between ResProx’s esti-

mated resolution and the experimentally observed resolu-

tion are 0.28 and 0.92 Å, respectively, for both training and

testing sets. This result indicates that the SVR approach is

robust and that the regression model has not been over-

trained.

The correlation coefficients between the Z-Mean pre-

diction and the observed X-ray resolution are 0.85 and 0.86

for the training and testing sets, respectively (Fig. 1).

Detailed analysis of ResProx’s training/testing protein set

indicates that the combined ResProx method uses the SVR

model in 99.3 % cases when evaluating published or PDB-

deposited X-ray structures. ResProx resorts to the Z-Mean

predictor or assignment of the maximal resolution for just

0.2 and 0.5 % of published X-ray structures, respectively.

ResProx uses one of these two alternative methods almost

exclusively when poor quality structures are encountered.

Overall, these results show that ResProx’s estimate of

equivalent resolution strongly correlates with the experi-

mentally observed X-ray resolution. Since diffraction res-

olution is closely tied to the number of reflections in a

diffraction pattern, this also implies that ResProx is sen-

sitive to the amount of X-ray experimental data that is used

in structure generation.

Comparative evaluation of ResProx

Resprox’s performance was compared with other existing

equivalent resolution methods, namely, Procheck-NMR’s

equivalent resolution (Laskowski et al. 1996), MolProbi-

ty’s score (Chen et al. 2010), and the RosettaHoles2 SRESL

score (Sheffler and Baker 2010). Procheck-NMR calculates

four equivalent resolution values from the following

quality parameters: Ramachandran plot quality, main-chain

hydrogen bond energies, v1 pooled standard deviation, and

the standard deviation of v2 trans angle (Laskowski et al.

1996). By averaging these individual equivalent resolution

values, one can determine an overall or mean equivalent

resolution for a given protein structure. The MolProbity

score is a log-weighted combination of MolProbity’s

clashscore, the percentage of residues in the ‘‘not-favored’’

region of Ramachandran space and the percentage of bad

side-chain rotamers (Chen et al. 2010). The MolProbity

score was originally optimized to predict crystallographic

resolution from a database of high-resolution X-ray struc-

tures. RosettaHoles2 uses information about protein pack-

ing to predict X-ray resolution via a SVR model (Sheffler

and Baker 2010). For the ResProx testing set, the correla-

tion coefficients between the observed resolution and the

predicted ‘‘equivalent resolution’’ values of Procheck-

NMR, MolProbity, RosettaHoles2 SRESL score and Res-

Prox were 0.78, 0.86, 0.87, and 0.92, respectively (Figs. 1,

Fig. 1 Correlation between ResProx equivalent resolution and X-ray

experimental resolution for the ResProx training and testing sets.

a Final ResProx values for the ResProx training set. b Final ResProx

values for the ResProx testing set. c Z-Mean equivalent resolution for

the ResProx training set. d Z-Mean equivalent resolution for the

ResProx testing set. e SVR predictions for the ResProx training set.

f SVR predictions for the ResProx testing set. R and Err parameters

indicate the Pearson correlation coefficient and the absolute mean

error of resolution prediction, respectively. The red lines correspond

to a perfect correlation (y = x)
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2). ResProx outperforms MolProbity and RosettaHoles2 by

about 7 % and Procheck-NMR by 15 %. ResProx also has

a significantly smaller mean absolute error (0.28 Å) than

Procheck-NMR (0.67 Å), MolProbity (0.38 Å), and Ro-

settaHoles2 (0.36 Å).

Resolution predictions by the Z-Mean method are less

accurate than those obtained by the SVR model or the

combined ResProx method (Fig. 1). This result is expected

because the high sensitivity of the Z-Mean method to rare

protein defects requires a uniform contribution of all

scores, including those that do not correlate well with

X-ray resolution (see Methods). However, even with these

limitations, Z-Mean’s error is still half of that seen for

Procheck-NMR and is similar to the prediction errors seen

for MolProbity and RosettaHoles2 (Figs. 1, 2).

Analysis of the error patterns revealed that Procheck-

NMR systematically overestimates resolution (i.e. the

predicted resolution values are smaller than experimental

ones) by 0.61 Å on average (Fig. 2a, b). On the other hand,

RosettaHoles2 SRESL score predicts a higher equivalent

resolution value than the experimental one by 0.28 Å (on

average) for the resolution range from 0.5 to 2 Å. For X-ray

structures with a resolution worse than 2 Å, RosettaHoles2

overestimates the resolution by 0.35 Å, on average (Fig. 2c,

d). Systematic differences between equivalent resolution and

experimental resolution for the full resolution range are 0.09,

0.05, 0.16, and 0.05 Å for MolProbity, SVR model, Z-Mean,

and ResProx, respectively (Figs. 1, 2e, f).

Sensitivity to completeness of experimental NMR

restraints

Different values of crystallographic resolution relate to dif-

ferent number of observables (reflections) in X-ray diffrac-

tion patterns. The higher the resolution, the larger the number

of reflections that one can expect to measure and use in

protein structure generation (Wlodawer et al. 2008). Among

many parameters that are reported for NMR models, the

number of NMR experimental restraints (NOE-, disulphide-,

and hydrogen bond distance restraints, torsion angle

restraints, J-couplings, etc.) is the closest experimental

match to the number of reflections. If ResProx is to have the

equivalent utility for NMR structures as it does with X-ray

structures, it is important to demonstrate that ResProx is also

sensitive to the number of NMR restraints. To conduct this

test, several sets of distance restraints with different per-

centages of randomly removed entries (0, 20, 40, 60, 70, 75,

80, 85, 90, 93, and 95 %) were created for the NMR model of

ubiquitin (PDB ID: 1D3Z). For each level of distance

restraint completeness, 5 sets of randomly reduced restraints

were created. 200 ubiquitin models, per restraint set, were

calculated using a standard simulated annealing protocol

included with the XPLOR-NIH distribution (Schwieters

et al. 2003). Ensembles of 20 models were selected based on

those exhibiting the lowest overall XPLOR energy. Average

ResProx values were calculated for each ensemble and

plotted against the percentage of missing distance restraints

(Fig. 3a).

As can be seen from Fig. 3a, the ResProx values for

ubiquitin demonstrate an exponential-like relationship with

the amount of experimental information (i.e. the number of

distance restraints). In other words, ResProx’s estimated

resolution appears to be sensitive to the amount of exper-

imental information, as one would expect from an equiv-

alent of diffraction resolution that is related to the number

of X-ray reflections. This observation is consistent with the

observed relationship between NOE completeness and

other measures of equivalent resolution that are calculated

by Procheck-NMR (Fig. 3b), MolProbity (Fig. 3c), and

RosettaHoles2 (Fig. 3d). However, it is important to note

Fig. 2 Correlation between equivalent resolution and X-ray exper-

imental resolution as calculated by Procheck-NMR, MolProbity, and

RosettaHoles2. a Procheck-NMR equivalent resolution for the

ResProx training set. b Procheck-NMR equivalent resolution for the

ResProx testing set. c RosettaHoles2 SRESL equivalent resolution for

the ResProx training set. d RosettaHoles2 SRESL for the ResProx

testing set. e MolProbity score for the ResProx training set.

f MolProbity score for the ResProx testing set. R and Err parameters

indicate the Pearson correlation coefficient and the absolute mean

error of resolution prediction, respectively. The red lines correspond

to a perfect correlation (y = x)
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that, unlike ResProx, both Procheck-NMR and MolProbity

can generate very similar scores for both poorly restrained

ubiquitin models (20 % of distance restraints) and well-

defined ones (100 % of distance restraints). In other words,

these two methods demonstrate limited sensitivity to the

completeness of the experimental restraints. In addition,

Procheck-NMR’s equivalent resolution overestimates

model quality by assigning an equivalent resolution below

2 Å to all models, even those that are calculated with just

5 % of the distance restraints. Indeed, Procheck-NMR

gives the majority of models a resolution below 1.5 Å. It is

also notable that the RosettaHoles2 SRESL score changes

within a small very range as a function of restraint com-

pleteness and seems to underestimate quality of good

models (assigning a resolution of 2.6 Å for models from

the 100 % restraint set) and overestimate quality of bad

models (predicting a resolution of 3.1 Å for models from

the 5 % restraint set).

In a practical sense, our results suggest that high Res-

Prox values (i.e. [2.5 Å) could help a researcher detect

experimentally underdetermined NMR structures. As will

be discussed later, ResProx is sensitive not only to a lack of

experimental information, but also to other problems in

NMR structure determination process.

Sensitivity to orthogonal measures of NMR structure

quality

The precision of NMR ensembles is not explicitly opti-

mized by structure generation programs and, therefore, is

considered to be a valuable parameter to evaluate the

quality of an NMR structures. Other non-optimized,

orthogonal measures of protein structure quality include

the correlation between observed and predicted backbone

chemical shifts (Neal et al. 2003; Wishart 2011; Han et al.

2011), the agreement between a protein model and its NOE

spectra, as reported by NOE R-factors (Gronwald et al.

2000), RPF scores (Huang et al. 2005) and RDC Q or

R-factors (Cornilescu et al. 1998; Clore and Garrett 1999).

Using the same set of ubiquitin structures described earlier

(obtained with randomly excluded distance restraints), we

calculated the ensemble precision and absolute mean dif-

ference between experimentally observed backbone proton

chemical shifts and those shifts predicted from protein

models by SHIFTX2 (Han et al. 2011). These parameters

were then plotted against the corresponding ResProx values

(Figs. 4a, 5a, respectively). As seen in these figures, Res-

Prox demonstrates an almost linear dependence on

ensemble precision and model-to-chemical shift agree-

ment, with a rank-order Spearman correlation coefficient of

0.95 for both parameters. A similar trend is observed for

equivalent resolution values determined by Procheck-NMR

(Figs. 4b, 5b), MolProbity (Figs. 4c, 5c) and Rosetta-

Holes2 (Figs. 4d, 5d), albeit with lower correlation coef-

ficients for MolProbity and Procheck-NMR. As mentioned

earlier, Procheck-NMR overestimates quality of this model

set, assigning an equivalent resolution of 2 Å to ensembles

with a precision as bad as 4 Å. RosettaHoles2 does not

appear to be very sensitive to ensemble precision, as it

predicts an equivalent resolution of 2.6 Å to highly precise

Fig. 3 Correlation between

completeness of experimental

information (distance restraints)

and equivalent resolution of

ubiquitin. a ResProx score.

b Procheck-NMR equivalent

resolution. c MolProbity score.

d RosettaHoles2 SRESL.

Different completeness of

experimental data was achieved

by random removal of different

portions of distance restraints

from the total restraint set (i.e.

0, 20, 40, 60, 70, 75, 80, 85, 90,

93, and 95 % of removed

restraints; five removal attempts

per completeness level).

Distance restraints consisted of

NOE-based distance restraints

and hydrogen bond distance

restraints of the ubiquitin NMR

ensemble 1D3Z
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models (secondary structure backbone RMSD of 0.22 Å)

and 3.1 Å to imprecise ensembles (RMSD of 4.29 Å).

These results suggest that ResProx correlates quite well to

a number of orthogonal structure quality measures, such as

ensemble precision and model-to-chemical shift agree-

ment. Furthermore, ResProx performs better than most

existing ‘‘equivalent resolution’’ methods in detecting

under-restrained NMR structures.

Sensitivity to NMR restraint violations and model

accuracy

Since the magnitude of the coordinate errors in X-ray

models correlates with crystallographic resolution, it is

reasonable to expect that ResProx should also demonstrate

similar sensitivity to coordinate errors in NMR structures.

Therefore, we investigated if ResProx was capable of

Fig. 4 Correlation between

equivalent resolution and the

ensemble precision of ubiquitin.

a ResProx score. b Procheck-

NMR equivalent resolution.

c MolProbity score.

d RosettaHoles2 SRESL

Ensemble precision was

assessed by calculating the

backbone RMSD of ubiquitin

NMR ensembles with MolMol

(Koradi et al. 1996). The

Spearman rank-order

correlation coefficient is 0.95,

0.69, 0.84, and 0.90 for

ResProx, Procheck-NMR,

MolProbity, and RosettaHoles2,

respectively

Fig. 5 Correlation of

equivalent resolution with

backbone proton chemical

shifts. a ResProx score.

b Procheck-NMR equivalent

resolution. c MolProbity score.

d RosettaHoles2 SRESL The

agreement between ubiquitin

models and backbone proton

chemical shifts was assessed by

predicting the chemical shifts

from different NMR models

with ShiftX2 (Han et al. 2011)

and calculating the mean

absolute difference between

predicted and experimentally

measured chemical shifts. The

Spearman rank-order

correlation coefficient is 0.95,

0.73, 0.85, and 0.95 for

ResProx, Procheck-NMR,

MolProbity, and RosettaHoles2,

respectively
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detecting the degree of structural inaccuracy that corre-

sponds to typical violations seen for a high-quality NMR

restraint set. To do so, a model of ubiquitin was generated

from published NOE and hydrogen bond distance restraints

of a high-resolution NMR model of ubiquitin (PDB ID:

1D3Z). A set of NMR models of ubiquitin with different

numbers of distance restraint violations, ranging from 0 to

20, was prepared for this test by varying the length of

simulated annealing step and, as a result, the convergence

of the XPLOR-NIH structure determination protocol.

ResProx values were calculated for individual structures

and plotted against the number of NOE distance restraint

violations (Fig. 6a) and model accuracy, as measured by

backbone RMSD with respect to the X-ray ubiquitin

Fig. 6 Correlation between

equivalent resolution of

ubiquitin and the number of

distance violations. a ResProx

score. b Procheck-NMR

equivalent resolution.

c MolProbity score.

d RosettaHoles2 SRESL

Fig. 7 Correlation between the

equivalent resolution of

ubiquitin and model accuracy.

a ResProx resolution

b Procheck-NMR equivalent

resolution. c MolProbity score.

d RosettaHoles2 SRESL Model

accuracy was measured by

calculating the backbone RMSD

of ubiquitin models with respect

to the ubiquitin X-ray

structure 1UBQ. NMR models

of ubiquitin with different

distance restraint violations

were analyzed (see text for

details)
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structure 1UBQ (Fig. 7a). As can be seen from Fig. 6a,

ResProx is sensitive to the agreement with experimental

data, increasing from a mean predicted resolution of 2–5 Å

after only 1 NOE violation or, in terms of model accuracy,

an RMSD of 1.2 Å. ResProx values reach a plateau of

*8.5 Å after 7 NOE violations. However, when model

accuracy is analyzed (Fig. 7a), it is clear that models with

the same number of NOE violations can have different

coordinate errors and that ResProx displays a sensitivity to

model accuracy within a range from 1 to 8 Å. Similar

dependencies are also observed for equivalent resolution

predicted by Procheck-NMR (Figs. 6b, 7b), MolProbity

(Figs. 6c, 7c), and RosettaHoles2 (Figs. 6d, 7d), albeit with

a smaller range of resolution estimates. Within the group of

models with no NOE violations, the ResProx resolution

prediction still varies substantially (from 1.4 to 2.8 Å),

confirming a well-known notion that the absence of

restraint violations by a model does not always imply high

structure quality (Nabuurs et al. 2006) and that other

parameters (e.g. XPLOR energy terms) should be included

to select the final NMR ensemble. While there is no strong

correlation between model accuracy and ResProx values

within this group of near-native models (data not shown), it

is important to note that the no-violations model with the

worst ResProx resolution (2.8 Å) also had the worst

backbone accuracy (0.86 Å).

ResProx’s ability to distinguish restraint-compliant or

accurate NMR models of ubiquitin from those with just a

few restraint violations or those with coordinate errors as

little as 1.3 Å (as measured by backbone RMSD) suggests

that ResProx could be used to detect inaccurate NMR

structures and that it could also be used as an additional

quality metric for selecting final NMR ensembles. These

results also show that ResProx exhibits a correlation with

structure accuracy in a manner consistent with the corre-

lation seen between crystallographic resolution and coor-

dinate error.

To further explore ResProx’s ability to detect coordinate

inaccuracies in NMR models, we compared ResProx val-

ues for several pairs of obsolete and current PDB entries

that had significant structural differences. Typically if a

PDB entry is updated with a significantly altered structure,

this is a strong indication of significant problems with the

original (obsolete) coordinates. For all tested cases, Res-

Prox showed a significant improvement in the predicted

resolution (i.e. the NMR model quality) after the PDB

entries were updated (Table 1). This result is in agreement

with improvements in equivalent resolution predicted by

other methods, but as seen in Table 1, the average differ-

ence in equivalent resolution between the obsolete model

and the corrected model is greater and more obvious for

ResProx (1.99 Å) than for Procheck-NMR (0.61 Å), Mol-

Probity (0.95 Å) or RosettaHoles2 (0.52 Å). It is

reasonable to assume that had ResProx been used prior to

the coordinate deposition of these obsolete structures, the

researchers might have been able to avoid the problems

associated with publishing and/or depositing these incor-

rect structures.

This survey of obsolete NMR structures also revealed an

example of ResProx’s ability to detect structural flaws that

go unnoticed by other equivalent resolution methods. More

specifically, ResProx clearly identified models with a

misplaced residue Glu105 in the obsolete NMR ensemble

of the E. coli heme chaperone CcmE (PDB ID: 1LIZ; Fig.

S6). For example, ResProx predicts an equivalent resolu-

tion of 4.7 Å for a ‘‘broken’’ model 3 of 1LIZ (Fig. S6B),

while assigning an equivalent resolution of 2.4 Å to a

properly built, ‘‘intact’’ model 1 (Fig. S6A). All the other

methods fail to discriminate between the ‘‘broken’’ and

‘‘intact’’ models of 1LIZ and predict identical or almost

identical equivalent resolution for these models. More

detailed analysis reveals that the ‘‘bump score’’ from the

GeNMR knowledge-based potential (Table S1), which is

uniquely used in the ResProx method, plays a critical role

in detecting the structural defect in this specific case (bump

Z scores are -0.1 and 16.9, for ‘‘intact’’ model #1 and

‘‘broken’’ model #3 of 1LIZ, respectively). Similar to the

GeNMR bump score, other quality scores that are unique to

the ResProx method should allow ResProx to detect a

larger variety of structural problems than what other

equivalent resolution methods could identify.

Sensitivity to refinement

In a typical NMR structure generation protocol, model

refinement occurs during the last few low-temperature

steps of simulated annealing and during the final minimi-

zation. More sophisticated refinement schemes have been

shown to produce a significant improvement of NMR

structure quality, in comparison with the standard refine-

ment techniques (Linge and Nilges 1999; Xia et al. 2002;

Linge et al. 2003; Ramelot et al. 2009). For instance,

refinement in explicit water may reduce the number of

atomic clashes, unrealistic hydrogen bonds and unsatisfied

hydrogen bond donors/acceptors. Water refinement can

also improve the normality of backbone and side-chain

torsion angles, and decrease the over-constraining of bond

lengths, bond angles, omega torsion angles, and side-chain

planarity (Linge and Nilges 1999; Xia et al. 2002; Linge

et al. 2003; Nabuurs et al. 2004). Interestingly, when water

refinement was applied to well-restrained NMR models, no

significant changes in structure accuracy were observed

(Spronk et al. 2002). To assess ResProx’s ability to detect

improvements in protein structure quality in the absence of

changes in global accuracy, we tested the program on

several NMR models before and after water refinement. All
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protein models were obtained from the DRESS database

(Nabuurs et al. 2004). In every case, ResProx was able to

detect improvements of model quality due to water

refinement. In particular, the decrease in ResProx’s reso-

lution values correlated well with the improvement (i.e.

increase) in the Z-scores (a structure quality measure)

given in the DRESS database (Table 2). The sensitivity of

ResProx scores to variations in protein model quality due

to very local adjustments (e.g. after water refinement) and

changes in global structure (e.g. due to NOE violations or

under-restraining) suggests that it could be used as an

initial step in the detection of NMR models with a large

range of structural problems. If required, the exact struc-

tural defects in those structures could be further identified

by analysing restraint violations, restraint quality, and

individual global or per-residue quality scores.

Typical equivalent resolution of NMR structures

Having shown that ResProx fulfills the requirements for a

robust measure of structure resolution (excellent agreement

with X-ray resolution, sensitivity to number of experi-

mental restraints, sensitivity to NMR restraint violations

and coordinate errors, sensitivity to orthogonal measures of

NMR structure accuracy, and sensitivity to refinement), we

decided to apply ResProx to calculate typical equivalent

resolution for a large sample of randomly-selected NMR

structures. For this study, a total of 500 randomly selected

X-ray and 500 randomly selected NMR structures were

assessed. Our results clearly show that NMR structures

consistently exhibit lower ResProx values than X-ray

structures, with the average NMR ResProx value being

3.2 ± 1.24 Å and the average X-ray ResProx value being

2.1 ± 0.40 Å. In other words, the equivalent atomic

resolution of a randomly chosen NMR structure is about

1.1 Å worse than a randomly chosen X-ray structure. A bar

graph displaying the distribution of NMR ResProx values

along with the actual resolution distribution of 500 ran-

domly selected X-ray structures is shown in Fig. S6. The

low equivalent resolution of typical NMR structures should

not be too surprising. Previous attempts to estimate the

equivalent resolution of NMR structures have given similar

values. In particular, a study that compared the level of

agreement between observed and predicted backbone

chemical shifts of X-ray and NMR structures estimated the

apparent resolution of NMR structures as 3.0–3.5 Å (Neal

et al. 2003). Likewise, a comparison of various Z-scores for

X-ray and NMR structures led Spronk et al. (Spronk et al.

2004) to conclude that the average NMR structure has an

equivalent resolution of 4 Å. Beyond these estimates of

apparent or equivalent resolution for NMR structures, there

is a significant body of evidence supporting the idea that

Table 1 Equivalent resolution

of ResProx, Procheck-NMR,

MolProbity, and RosettaHoles2

for obsolete and current PDB

entries of NMR structures

Protein Version PDB ResProx

(Å)

Procheck

(Å)

MolProbity

(Å)

RosettaHoles2

(Å)

AbrB N-terminal domain Obsolete 1EKT 5.14 3.20 4.73 3.58

Current 1Z0R 2.68 1.95 3.76 2.62

Ets-1 Obsolete 1ETC 6.29 3.00 5.03 3.63

Current 1R36 2.77 1.78 3.53 2.74

CcmE Obsolete 1LIZ 4.91 2.42 3.24 2.20

Current 1SR3 2.22 2.40 2.94 2.14

Domain IV from the YbbR Obsolete 2KPS 3.22 2.05 2.90 2.66

Current 2L3U 2.86 1.75 2.78 2.62

SH3 of phospholipase

C-gamma

Obsolete 1HSP 5.80 2.90 4.40 2.94

Current 2HSP 4.78 3.13 4.16 2.85

MRF-2 DNA-binding

domain

Obsolete 1BMY 5.05 3.13 4.62 3.47

Current 1IG6 1.80 1.60 1.88 2.34

E. coli thioredoxin Obsolete 1TRX 2.03 1.50 2.07 2.25

Current 1XOB 1.41 1.35 1.27 1.8

Table 2 Improvements in the quality of water refined models:

comparison between ResProx values and DRESS Z-scores

Protein PDB Refined DRESS

Z-score

ResProx

(Å)

Intestinal fatty acid-

binding protein

1A57 - -4.46 5.50

? -2.72 2.56

Designed protein G core

variant

1FD6 - -1.4 2.49

? 0.33 1.42

Rho GDP-dissociation

inhibitor

1AJW - -2.79 2.90

? -1.24 2.03

Nudix enzyme hydrolase 1F3Y - -2.27 3.19

? -1.31 2.29

MTH1175 1EO1 - -3.31 3.69

? -1.63 2.42
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NMR structures are generally of lower quality than X-ray

structures. For instance, an investigation of proton density

distributions revealed that many high-precision NMR

structures have an over-packed interior, whereas lower-

precision structures display a mix of under- and over-

packed regions (Ban et al. 2006). These distortions in

protein packing could be behind another observation that

NMR structures are significantly less stable in MD simu-

lations and have higher internal energies than crystallo-

graphic models (Fan and Mark 2003). More recently,

Andrec et al. (Andrec et al. 2007) assessed the structures of

35 proteins that were solved by both NMR and X-ray

crystallography using Procheck (Laskowski et al. 1993),

Verify3D (Eisenberg et al. 1997), ProSaII (Sippl 1993),

and MolProbity (Davis et al. 2007) and came to the con-

clusion that NMR structures were consistently of lower

quality than X-ray structures.

NMR structures need not necessarily be doomed to be

perpetual basement-dwellers in the structure quality pen-

nant race. In fact, with ResProx, we found a number of

NMR structures (Fig. S6) that exhibited an equivalent

resolution equal to or better than an average X-ray structure

(ResProx value \ 2.1 Å). As noted earlier, the equivalent

resolution of an NMR structure can be improved by adding

more experimental observables (Fig. 3) and/or a priori

information, such as protein solvation effects (Table 2).

The ubiquitin structure (PDB ID: 1D3Z) determined via

multiple RDCs along with extensive NOEs and torsion

angle restraints (Cornilescu et al. 1998) can serve as a

useful example of a high-quality NMR structure (mean

ResProx value of 1.8 Å). So far, the smallest equivalent

resolution or ResProx score we have observed to date is

0.65 Å, corresponding to a model in a ubiquitin NMR

ensemble (PDB ID: 1XQQ) that underwent a unique,

simultaneous refinement of its structure and dynamics by

NOEs and experimental order parameters in explicit water

with the CHARMM 22 force-field (Lindorff-Larsen et al.

2005). These data suggest that the capacity to determine

very high resolution NMR structures is already in hand and

that the use of functions like ResProx (or other measures of

equivalent of resolution) will not only help the NMR

community achieve higher standards in protein structure

determination but also improve perceptions about the

quality of NMR structures in the scientific community.

ResProx limitations

While we firmly believe that ResProx is a powerful method

of evaluating protein structure quality, its range of utility is

not infinite. As with any equivalent resolution method,

ResProx inherits the shortcomings of crystallographic res-

olution, which ResProx attempts to emulate. In particular,

it is important to remember that crystallographers use

resolution only as an approximate or simplified measure of

protein quality. In protein crystallography, there are several

other parameters that should be considered when evaluat-

ing protein structure quality (Wlodawer et al. 2008). For

instance, the likelihood that a particular structure can be

solved to a certain level of coordinate accuracy will depend

not only on its experimental resolution but also other

measures of X-ray data quality, such as data completeness,

accuracy of the averaged reflection intensities (R-merge),

reflection signal-to-noise ratios, and the average ratio of

reflection intensities to their estimated errors. However,

even high-quality X-ray data cannot guarantee that mis-

takes will be not made by the researcher(s) who solves the

structure. These mistakes can be detected by evaluating the

agreement between the model and experiment with

R-factor and Rfree parameters. They can also be identified

by assessing the quality of the stereochemical parameters

(e.g. bond lengths, bond angles, and peptide bond planar-

ity) and the normality of its structural features, such as

torsion angles and hydrogen bonding.

Similar to crystallographic resolution, ResProx scores

should be treated as a first approximation for assessing

protein structure quality. Furthermore, the following limi-

tations need be considered. First, it must be recognized that

ResProx evaluates the global quality of protein structures

and, like any method for global protein structure assess-

ment, is not a substitute for local or per-residue analysis.

For instance, a single broken bond or a single incorrect

torsion angle in otherwise perfect structure will likely be

undetected by ResProx. Methods for per-residue analysis

of protein structure, such as Procheck (Laskowski et al.

1993), WhatCheck (Hooft et al. 1996), MolProbity (Davis

et al. 2007), VADAR (Willard et al. 2003) or PROSESS

(Berjanskii et al. 2010) should always be used when a

comprehensive analysis of structural quality is required.

Second, the aforementioned sensitivity of ResProx to

under-restrained models and NOE violations should not

mislead researchers into using ResProx as a substitute for a

detailed analysis of the quality of experimental data or the

agreement between an NMR model and its restraints. More

specialized measures, such as RPF scores (Huang et al.

2005), NOE R-factors (Gronwald et al. 2000), U-scores

(Nabuurs et al. 2005), RDC Q-factors (Cornilescu et al.

1998), RDC R-factors (Clore and Garrett 1999) and tradi-

tional restraint violations should be used for these pur-

poses. Third, ResProx may overestimate the quality of

misfolded idealized models, such as models that can be

generated by the Rosetta family of methods such as

Rosetta-NMR (Bowers et al. 2000), CS-Rosetta (Shen et al.

2009), and CS-DP Rosetta (Raman et al. 2010). Indeed,

ResProx is primarily designed to handle near-native protein

structures. Even though ResProx is able to detect inaccu-

rate NMR structures in our tests, the method was not
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developed to serve as an ab initio protein folding potential

or decoy detector and, therefore, may overestimate the

resolution of misfolded idealized models with well-formed

secondary structure elements. Fourth, ResProx should not

be routinely used to estimate the resolution of unfolded or

intrinsically disordered proteins and small extended pep-

tides. Unfolded protein models are often used as the

starting point in NMR structure generation. Consequently,

ResProx detects and treats unfolded or disordered struc-

tures as ‘‘starting’’ structures and assigns them the upper

limit of equivalent resolution (i.e. 10 Å). Finally, ResProx

doesn’t perform particularly well with protein complexes

containing ligands such as DNA, RNA, and larger drugs.

This is due to certain limitations in ResProx’s sub-pro-

grams. Binding to DNA or RNA may induce a significant

change in a protein molecule. As a consequence, removal

of DNA or RNA from a protein complex often leaves the

protein structure in an unrealistic conformation and there-

fore reduces the accuracy of ResProx’s resolution estimate

by about 10–15 %. Although NMR structures of protein-

DNA and protein-RNA complexes are not yet very abun-

dant in the PDB, efforts to improve ResProx’s performance

for such complexes are underway in our group.

Conclusion

Single value, experimentally-derived parameters, such as

atomic resolution or number of NOEs per residue, still

dominate the way we think about and assess protein struc-

tures determined by crystallographers or NMR spectrosco-

pists. Like grades on a test, they are easy to remember, easy to

understand and easy to compare. However, experimental

measures don’t necessarily catch experimentalist’s errors.

Over the past few years a number of efforts have been made

to develop ‘‘derived’’ single-value parameters that assess

proteins more on their coordinate quality than their experi-

mental quality. These include, but are not limited to, pre-

dictors of equivalent resolution that are built into structure

validation programs, such as Procheck-NMR (Laskowski

et al. 1996), MolProbity (Davis et al. 2007), and Rosetta-

Holes2 (Sheffler and Baker 2009, 2010). Unfortunately,

these methods take into account only limited number of

protein features (\5) and cannot provide a very compre-

hensive assessment of protein quality. To address this issue,

we have developed a new measure of equivalent resolu-

tion—called Resolution-by-Proxy or ResProx—that is based

on 25 protein quality metrics. Extensive assessments show

that ResProx fulfills all the requirements for a robust measure

of structure resolution including excellent agreement with

observed X-ray data (R = 0.92), sensitivity to experimental

numbers of restraints, sensitivity to NMR restraint violations

and coordinate error, sensitivity to orthogonal measures of

NMR structure accuracy, and sensitivity to refinement.

Applying this method to 500 randomly selected NMR

structures, we found that the average equivalent resolution

for NMR structures is about 3.2 Å (about 50 % worse than

the average for X-ray structures). Furthermore, we were able

to demonstrate that ResProx could be used to identify under-

restrained, poorly refined or incorrectly modeled NMR

structures and detect protein defects that other equivalent

resolution methods could not. We believe that ResProx now

offers a robust route for the scientific community to directly

compare the quality of NMR structures to the quality of

X-ray structures using the same common and universally

understood measure—atomic resolution. The ResProx web

server and a VMware virtual image of the ResProx program

are available at http://www.resprox.ca.
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